A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds
نویسندگان
چکیده
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.
منابع مشابه
Erb and c-Kit receptors have distinctive patterns of expression in adult and developing taste papillae and taste buds.
Twenty four different protein tyrosine kinases (PTKs) were amplified from a taste-enriched cDNA library using PCR. The expression of four protein tyrosine kinase receptors (EGFR, ErbB2, ErbB3, and c-kit) was examined in adult and developing rat taste papillae. All four of these receptors were expressed in overlapping populations of differentiated taste cells within adult taste buds. Taste bud b...
متن کاملDistribution and development of taste buds on the incisive papillae of mice and rats.
The mouse and rat have been shown to have many taste buds on the incisive papillae of the hard palate. In the rat incisive papilla, taste buds were more numerously observed than in the mouse. They were most densely distributed in both animals on the anteromedial wall of the lower part of the nasopalatine ducts. The taste buds on the mouse incisive papilla appeared at 4 or 5 days of age, and aft...
متن کاملDevelopmental changes of the taste sensation depending on the maturation of the taste bud and its distribution in mammals.
Behavioral experiments elucidated that newborn mammals must be able to distinguish differences of taste between preferable and aversive sapid solutions in order to continue their development (Steiner, 1973; Ganchrow et al., 1986). Such a gustatory function must depend on the development of taste buds both before and after birth. The appearance and maturation of taste buds are different among th...
متن کاملEffect of Specific Lesion of Non Serotonergic Pathway on Neurons of Nucleus Raphe Magnus Morphology in Rat
Purpose: The nucleus raphe magnus (NRM) is a medullary nucleus containing serotonergic and non serotonergic neurons, both of which densely project to spinal cord. The goal of this study was to determine the role of these non serotonergic neurons in pain perception and their cytological changes after the specific lesion of bulbo-spinal serotonergic pathway. Materials and Methods: Male rats were...
متن کاملLong-term effects of nicotine on rat fungiform taste buds.
Nicotine, an alkaloid found in tobacco smoke, has been recognized as capable of inducing changes in taste functionality in conditions of chronic exposure. The mechanisms underlying these sensory alterations, however, are currently unknown. We addressed this issue by studying the long-term effects of nicotine on the anatomical features of taste buds, the peripheral end-organs of taste, in rat fu...
متن کامل